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We consider  nonlinear heat  t r anspor t  in a medium whose thermal  conductivity has a power- law t e m p e r -  
a ture  dependence. When the volumetr ic  heat  absorpt ion ra te  in the medium is t empera tu re  dependent this 
p rocess  is descr ibed  [1] by the quasi l inear  parabolic equation 

O u / O t  - ~  div (u a grad u) --  ~(u), (~ ~ 0. (1) 

A cha rac te r i s t i c  feature of this nonlinear t r anspor t  p rocess  is the finite ra te  of propagation of the rmal  d i s -  
turbances  [2, 3]. This means  that a d is turbance f rom a source  is propagated in the medium in the form of a 
the rma l  wave whose front moves at a finite veloci ty  with r e spec t  to the undisturbed background. When there  
is a t empera ture -dependent  volume absorpt ion of heat in the medium ( r ~ 0 ) a nonlinear effect  of the spatial  
local izat ion of a the rmal  dis turbance can be observed when even after  an infinite t ime the dis turbance pene-  
t r a t e s  only a finite distance into the medium [4, 5]. 

In the p resen t  paper we investigate the local iza t tonof  a the rmal  dis turbance when the veloci ty of the 
the rmal  wavefront  r e v e r s e s  its direction.  

We consider  the effect  of an instantaneous point heat  source  of s t rength Q placed in a nonlir~ear medium 
in which volumetr ic  heat  absorpt ion has  a power- law tempera ture  dependence ( @ (u) = yu v, y = coast ,  v = 
1 - ~, ~ < 1). In this case  the problem of finding the tempera ture  distr ibution in the medium reduces  to the 
problem of solving the quasi l inear  equation 

0~ t 0 ~ (2) 
o t  = z ~ - I  a z  ~, o z  ] . 

where  s = 1, 2, and 3 for plane, axially symmet r i c ,  and centra l ly  symmet r i c  problems,  respec t ive ly .  The 
initial dis t r ibut ion u(o,  x) = u0(x) in the Cauchy problem under considerat ion in the domain I~ = {(t, x) : t ~  
[ 0, + ~) ,  x >_ 0} for Eq. (2} is represen ted  by a delta function which sa t is f ies  the condition 

uo (z) L (s) z~-I dx = Q, (3) 
o 

where  

2 for s = t ,  

L(s).:= 2n for s = 2 ,  
4n for s ---- 3. 

Using the resu l t s  of [6] we seek the solution of problem (2), (3) in the form 

l0 for z ~> x+ (t). (4) 

Substituting u(t ,  x) in the form (4) into Eq. (2), we obtain 

[x~ --  x~] ~ �9 2~ax+x'+ [x~ - x~l ~- '  = 2~,ao+' [x~ - x ~]~-~ + 44 (a - l) ao+' x ~ [x~ - xT-~  - w ~-~ [x~ - x~]~c ~-o~. (5) 

A dot over a quantity in (5) denotes its t ime derivative.  Equation (5) is sat isfied identically if we set  ~ = a -1 
and choose the relat ions a ( t )  and x+ ( t )  in the form 

[ o  ]~ 
a ( t )  = 2 ( 2 + s a )  t ; (6)  
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(9 § ca) s t2 (7) 
x~+ ( 0  = C t  2 + "  - -  "~ ~ t + s ~  " 

The  constant  C in Eq. (7) can  be  de t e rmined  by  using the in tegra l  condition (3) in the f o r m  
x+(t) 

t" u ( t , x ) L ( s ) x s - t d x = Q  as t--*'O. 
5" 

After  evaluat ing the in tegra l  [7] and taking account  of  (4), (6), and (7), we obtain 
Sq 1 

~ ~ ~ 
Thus ,  the final exac t  solut ion of p rob l em  (2), (3) has  the fo rm 

1}' u (t, x) ----- 12 ~- so) t [x~ (t) --  x '  "~ for x < x+ (t), (9) 

for z ~ z + ( t ) ,  

where  x §  is de t e rmined  by  Eq. (7) and the constant  C is found f rom (8). We note that  as  T--* 0 th is  so lu-  
t ion goes  over  into the solut ion of the p r o b l e m  of a point sou rce  in a nonl inear  med ium without absorp t ion  [2]. 

We give a p h y s i c a l  i n t e rp re t a t ion  of solut ion (9). Th is  solution d e s c r i b e s  a t h e r m a l  wave whose f ront  
m o v e s  through the med ium with a finite veloci ty.  At any instant  the posi t ion of the t h e r m a l  wavefront ,  which 
s e p a r a t e s  the d i s tu rbed  reg ion  where  u > 0 f r o m  the undis turbed reg ion  where  u = 0, is de te rmined  by  the 
r e l a t ion  x = x + ( t ) .  The  c h a r a c t e r  of this r e l a t ion  is  shown qual i ta t ively in Fig. 1. We note that  at  the t h e r -  
m a l  wavef ron t  the t e m p e r a t u r e  and heat  flux a r e  continuous, even for  a < 1 when the wavef ron t  is s teep  
( ] u+ I - ~  as  x ~ x + ( t ) ) .  In this  ca se  the hea t  flux a c r o s s  the wavef ron t  van i shes  because  the t h e r m a l  con-  
duct ivi ty van ishes .  

A c h a r a c t e r i s t i c  f ea tu re  of the p rob l em under cons idera t ion  is  the fact  that  in the p r o c e s s  of evolution 
of the t h e r m a l  d i s tu rbance  the t h e r m a l  wavef ron t  r e v e r s e s  its d i rec t ion  of motion.  For  t < To, where  

To = [C t § s___Z~ ]~(z+sa) 
5 + ,o)'J 

k + ( t )  > 0 and the' s i z e s  of the d i s tu rbed  r eg ion  i n c r e a s e  with t ime .  The  ve loc i ty  of the front  d e c r e a s e s ,  and 
a t  t = T O the t h e r m a l  wavef ron t  s tops .  At this  instant  the d is turbed  reg ion  r e a c h e s  i ts  m a x i m u m  size  x m = 
x+(T0).  Then  the ve loc i ty  of the f ront  r e v e r s e s ,  and for  t > T O a cooling wave is propagated  in the med ium 
(k+( t )  <0 ) .  F o r  t = Tin,  where  

2+80" 

T :  = T o (2 + st0'(:+sa)' 

the d i s tu rbed  reg ion  con t rac t s  to a point, and u = 0 eve rywhe re  in R2+ N {t  > Tm}.  In other  words ,  in the 
p rob l em under cons ide ra t ion  the t h e r m a l  d i s tu rbance  f r o m  an instantaneous point sou rce  ex i s t s  for a finite 
t ime  T m .  Th i s  r e s u l t  is  unusual f r o m  the point of  view of the l inear  theory  of hea t  conduction, but  it a g r e e s  
with the conclus ions  in [8] where  it  was  shown that  for  v < 1 in the Cauchy p rob l em for Eq. (1) a value of 
T m < + ~ a lways  ex i s t s  such  that  u ( t ,  x) = 0 for  a l l  t _  T m .  

In conclusion we note that  Eq. (1) d e s c r i b e s  a b road  c l a s s  of t r a n s p o r t  phenomena (heat conduction, d i f -  
fusion, f i l t ra t ion,  etc.) .  T h e r e f o r e  the r e s u l t s  obtained can be  In t e rp re t ed  within the f r a m e w o r k  of other  
phys ica l  models .  
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In problems of convective diffusion In a system of reacting particles at high Peclet  numbers, the s t ruc-  
ture of singular s treamlines which begin and end on particle surfaces plays an important role [1-3]. The flow 
involves chains of part icles in which mass t ransfer  is greatly retarded by the Interaction of diffusion wakes 
and boundary layers  of particles belonging to the chains. Taking account of the interaction of diffusion wakes 
and boundary layers  of particles,  and assuming that the ratio of the lattice period b to the radius a of a 
sphere satisfies the inequality b/a >> Pe Ws, where Pe is the Peclet  number of a sIngle sphere, Voskanyan 
et al. [4] performed calculations for a system of spheres of equal radii  at the nodes of a widely spaced cubic 
lattice. Under these assumptions the original problem could be reduced to a se l f -s imilar  problem of the dif- 
fusmn of mat ter  with a constant concentration flowing past an isolated sphere [5]. In the present  paper we 

�9 113 consider mass  t ransfer  of a concentrated ordered system of reacting solid spheres when bin << Pe . 

We consider steady convective diffusion in the laminar flow of a viscous incompressible liquid filtering 
through a system of reacting spheres of equal radii  at the nodes of a cubic lattice. We assume that the liquid 
f i l ters  through the spaces between the spheres with an average velocity U which is parallel  to one axis of the 
lattice, and that the Reynolds number Re = aU/v, where v is the kInematic viscosity of the liquid, is small. 
Then the velocity field of the liquid in the lattice can be determined within the framework of the cell  model 
[6, 7], or when b/a >> 1, by the concentrated-force model [4, 8]. Henceforth we assume that the position of a 
fixed sphere in the lattice is given by a set of three  integers, and the distance along the s tream axis is given 
by the value of the parameter  k = 1, 2, . . . .  

Using a system of spherical coordinates with its origin at the center of an a rb i t ra ry  sphere, the s tream 
function near the surface of a sphere can be writ ten in the form 

= (3/4)UA (n) (r -- a) ~ sin s 0, lira A (n) = l, 
iZ--~ 0 

where n is the number of spheres per unit volume. The specific expression for A (n) can be determined, in 
part icular ,  from [4, 6-8]. 

The concentration distribution in the flow is determIned by solving the steady-state convective diffusion 
equation 
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